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Why I'm Here:
The NASA Challenge Today

“The mismatch between NASA’'s aspirations for human
spaceflight and its budget for human spacetlight is the
most serious problem facing the Agency.”

NASA Advisory Council Findings: August 2014

I’'m an Entrepreneur and I’m Here to Help

)



EVOLVABLE MARS CAMPAIGN

A Pioneering Approach to Exploration
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But Things Are Changing

Elements

NASA Model Based Prediction
NASA Approach

SpaceX Actual Performance
Firm Fixed Price Acquisition

Stage One (Including Engines)

Stage Two (Including Engine)

Fee (12.5%)

Program Support (10%)

Contingency (30% Vehicle, 10% Engine))

Vehicle Level Integration (8%)

Total

Weight DDT&E Flight Unit Total Weight ~ DDT&E 2 TestFlt Units  Total
(Ibs)  (FY2010 $M) (FY2010 $M) (FY2010$M) (lbs)  (FY2010 SM) (FY2010 SM) (FY2010 $M)
39,080  $1,535 $206 $1,741 39,080  $188.7 $109.3 $298.0
6,520 $608 $44 $651 6,506 $89.0 $23.6 $112.6
$268 $30 $298 $0.0 $0.0 $0.0
$241 $21 $263 $0.0 $0.0 $0.0
$674 $68 $741 $0.0 $0.0 $0.0
$258 $24 $282 $22.2 $10.6 $32.8
45,600 | $3,584 $393 $3,977 45,586 $299.9 | $143.6  $443.4

NASA’s Numbers, Not Ours






Where to Go For Resources?
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Asteroid Source Populations

ll]

1 lll 'U'I 1 L lllllll L L} lllllll

Bolide Detections
Brownetal. (2002)

Main Belt & NEOs
Bottke et al. (2005)

]
0
£ 4 NEOs
3 8 6 fiaiikan
Z 10°h 0° tonnes Rabinowitz et al. (2000)
]
= T
3 06 tonnes
E 10'F
&)
MM Source
10°F  Model Population
Minimoons
100‘, eieral vyl s 3 il T |

0.001 0.010 0.100 1.000 10.000
Diameter D (km)

Our NIAC Study Provides New Insights Here




Volatile Materials in Asteroids

e 10 to 50% of known large asteroids
are likely hydrated Cl-CM-like

e Cl-CM chondrites are typically
10-20% water by weight in the form
of hydrated minerals

e Cl-CM materials are friable and may |
be in rubble piles with regolith or in
blocks on asteroids.




Parabolic Reflector Performance

Ideal 3D Parabolic Reflector Performance

Spherical Receiver =  Flat Plate Receiver
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2m Diameter Solar Furnace Demonstration on
A Stainless Steel Bolt

';4’;"!,” {11 &5 80



The Solar Furnace at White Sands




What Happens When Highly Concentrated
Sunlight Hits An Asteroid-Like Rock?




The limiting case in which volatile release stays in place and can not
diffuse through rock (assuming an ideal gas):

RT Gas
Pg ='Df#:o'gmax Pressure
Mf, Outward

P = Gas pressure in rock, 4.68x10% Pa
fg = \Volatile mass fraction of rock, (0.2)
R; = |deal Gas Constant, J/(molK)

M = Molecular weight of gas, kg/mol (0.018 for Water) Heat Flux Inward
f, = Void Fraction of Rock (typically 0.2) Resulting In Gas Release

o . Resulting Tensile Stress, Pa

10 To 100 Times The Tensile Stress Of Typical
Carbonaceous Chondrite Meteorites




The Patent Pending Optical Mining Process Does Not
Require Costly or Massive Electric Power or Robotics

1. Surface Heating 2. Spall Front Via 3. Gas Release Drives 4. Fresh Surface
Thermal Stress Particles Away Exposed

Spall
p

Progress continues at ~1m/hr at surface blackbody peak temperature
~1000K:

Solar Power 1. Cold surface temperature rises to near the blackbody temperature
-+ associated with the intensity of the applied radiation over a period of a
-< few seconds establishing a mm scale hot layer.

. A spall surface is created primarily by compressive thermal stress

Outgassing aided by thermal shear and gas pressure gradient.

. mm scale spall particles fully outgas in seconds as surface outgassing
drives them from the asteroid.

. Process repeats in a cyclic fashion exposing new surface to applied
radiation.

Our Physics-Math Model Shows How It Works




I

Can We Do That in Space



Let’s Think... Like We Live In Space
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A 40ft Diameter Reflector in Space in 1992

Photo of Precision 14m Diameter Inflatable Reflector In Space Shuttle Flight Demonstration



Inflatable Reflector Scaling
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Some Possible Inflatable
Reflector Configurations
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Capture Sequence: Currently TRL-4

» S/C approaches and matches spin.

* When asteroid is centered in the bag,
close top diaphragm.

« Mechanism provides elasticity to
control loads to solar arrays .



ISRU Concept

Low Pressure-Asteroid .
Containment Bag Telescoping Port with
Penetrator With Sleeve Joint

Light Tube

Subreflector
///

Growing
Encapsulated \ Transparent Excavated ~

" Dust Filtration and
Flexible Protective Separation System
of Lenticular Boot Reflects
Structure Debris and
Intense Radiation

Asteroid ’ Cavity
(Restraint Net Primary Reflector Front Surface

Not Shown) Surface
Inflatable, Passively-Cooled

Cryopump and Ice Storage Bag




Solar Thermal Propulsion
7
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Solar Thermal Rocket (STR) Propulsion

PLANETARY SPACE CRAFT

CONCENTRATOR ‘
STEERING AND POINTING __
ACTUATORS T\

THRUSTER WITH RADIATION SHIELD

{Artist Concept)

SRI'OR(’:KI'er;[?gsqgr e Currently at TRL 3-4 Based On
on Air Force Decades of Ground Development
Test Stand in e Key Features:

1992 - 100X higher Thrust Than SEP

- Omnivorous for propellant type (H20, CO2,
etc...)

- Isp>300s for H20 Propellant

- Relatively simple and robust in concept




Spacific Impuisa {{bf-aThm)

Water-Based Solar Thermal Rocket Specific
Impulse Performance

420 i i t
1 Working Pluid + Water .0 i
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As reported in Figure 11 of AIAA-92-1719, “Solar Thermal
Propulsion Status and Future”, JAMES SHOJI, PATRICK
FRYE, and JAMES MCCLANAHAN from the Space
Programs and Technologies Conference. March 1992

Thorium Oxide

Zirconia
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Scaled from personal communication with James
French, August 2013 based on ODK code run with
performance derated to account for real losses.

The two results are effectively in agreement, so we will use them. They are significantly
derated from ideal calculations based on experience with real rocket engines.



The Omnivore Thruster

Incoming /

Sapphire Solar Energy
Window

Cold Radial
Propellant
Injection for
Window
Cooling

Ceramic Foam Solar
Absorber

Counterflow
Propellant in
Channels for
Regenerative
Heat Capture

Tangential Flow
Injection In Annular
Channels At Window

and Throat
Photo of Zirconia Foam

Showing Penetration of Sunlight

1)
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ICS Associates
Proprietary
Informtion

Zirconia Provides Isp=170s, Thorium Oxide Provides Isp=350s



L., @ APIS

’ : _ ' Asteroid Provided In-Situ Supplies

5 ! . Apis is the genus for Honey Bees
Multiple Honey Bee
. ; Missions Will Be In

Progress Simultaneously
Providing a.Constant

. Stream of Resources to
Cis-Lunar Space

TransAstra Has
Patents Pending
For Passive Thermal
Volatile Collection
and Dust Separation

7"/:’/\/75

NSTARAN
TransAstra |Is Working
with NASA, ISS, and
CASIS Planning an Early
Optical Mining Demo
on ISS

Reusable Worker Bee |
Space Tugs Provide -
Commercial Transport -
for NASA Astronauts

in Deep Space

Technology

Optical Mining Exploits
Inflatable Structures

Technology Developed
© for NASA and the DoD

High Lunar Orbit is-an Ideal
Location for a Propellant
Depot Suppl;ed from

o~ Asteroids z

Commmercial Applications

Include Delivering Satellites .:
from LEO to GEO, Asteroid —- - " &~
Mining, and Space Tourism -
Beyond LEO

Patent Pending Optical” -
Mining Technology Uses
Concentrated Sunlight To
Excavate Asteroids and
Extract Gases

Honey Bee Mmlng ——
- _Technotogy. Builds .
On NASA Technology,
. - : - - - - _Invested inthe

- ., W i i ARM Mission




A Map of Cis-Lunar Space
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Worker Bee Transportation Network
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Coordinated With ESI

Pyrolytic ISRU Demonstration Apparatus

Oven Support Sample & l
Frame ~— Oven  sypport Removable
Stainless Steel . Door Frame  Bulkhead
Vacuum Tank ( , ] X Over
(*1.5mx1.5m) — . (Double-Walled
pombem el ~----3 | Sheet Steel on a
R — - 1 | Steel Frame)

Radiant Heater

Vacuum : \ A

Pump D; | : Resistive
: | j e | Electrical
: T~
: -

Test Port for Mass Element
Spec and Other T R all S
Instruments P aebhhbd H it Sample
Fused Siica” \_ <= |~/
Window X “Evacuated Volatile
Photography “Valve Transport Tube

View Port
™ Volatile Sample

LN2 Dewar~ Canister

Architect: Sercel, Pl: Gertsch (MoS&T), Lab: Dreyer (CSM)



Our Solar Thermal
Oven Simulator

Year 1 Oven Development and Initial Tests Complete
Year 2 Research Program Now Gearing Up



SBIR Sub-Scale Optical Mining Demonstrations

CONTROL
MONITOR
VACUUM e — — —
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LENS \é - ; SHUTTER |
s o |
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PRESSURE SIGNAL SAMPLE DIODE ARRAY DETECTOR 1
S ] 4  HHNI<s———————
* PEMEERINE SlakiL §\—V—/Q FILL / VACUUM PORT

Architect and PI: Sercel, Lab: Dreyer (CSM)



CSM Lab




Experimental Methods

Xenon Arc Lamp, nominally 150 W

Focus variable from ~10 to 1000 W/cm?2
Video: 1280 x 720, 240 fps

Mass Spectrometer

* Before and After, 1-200 amu

8 mass values every 3 seconds during ru
Chamber pressure recorded at 20Hz
Sample Measurements

» Before and After mass

* Before and After photographs




37 Subscale Optical Mining Tests Have Been Completed

Test # | Sample Type Form Result Test # Type Form Result
1 Serpentine Block preparatory 20 Tray None Control
2 Serpentine Block preparatory 21 Lizardite Thin slice Floatation
3 Serpentine Block preparatory 22 UCF Simulant 2 | Thin slice Off gassing
4 Lizardite Block Particle spalling 23 UCF Simulant 2 Block Preparation test
5 Lizardite Block Explosive fracturing 24 UCF Simulant 2 Block Preparation test
6 Lizardite Thin slice Floatation 25 Lizardite Block Floatation
/ Murchison Thin slice Floatation 26 Lizardite Block Preparation test
8 Serpentine Thin slice Control 27 UCF Simulant 2 | Powder Cancelled
9 Anorthosite Thin slice Control 28 Lizardite Block Floatation
10 Harzburgite Thin slice Control 29 Lizardite Block Irradiance Testing
11 Serpentine Thin slice Control 30 Lizardite Block Irradiance Testing
12 Serpentine Thin slice Control 31 Lizardite Block  |Particle spalling, Floatation
13 Murchison Thin slice Floatation 32 | UCF Simulant 2 | Block Spalling
14 | UCF Simulant | Thin pieces Melting 33 | UCF Simulant 2 | Block Spalling
15 | UCF S;mulant Block Off gassing 34 | UCF Simulant 2 | Block Cryotrapping
16 deilet Block Off gassing 35 | UCF Simulant2 | Block Cryotrapping
17 Lizardite Thin slice Floatation 36 Murchison Block Pi%g;[(reafc?;ﬂ%o
19 | Ceramic Base none Control 37 Lizardite Asteroid | g ling/Floatation plume

Regolith
















2015 Full Scale Demonstration

»
8 Parabolic

Reflector

Louver [®
System

Parabolic
Reflector

Aspects funded by SBIR, NIAC and Private Sponsors




Two Assembly Configurations Shown

14 Inch Fused Silica [ |

Cryotrap

Internal Sample Holder Showing 8
inch and 4 inch Diameter Samples

Vacuum Pump

Assembly




Full Scale Optical Mining Demonstrated at
White Sands

The Pl Holding A High
Fidelity Simulant After It
Was Spalled In Vacuum.

Spall products can be seen
in the vacuum chamber
falling into the collection

Cryotrapped volatiles can be seen
after the removal of the cryotrap
from the vacuum system after a test
run using low fidelity gypsum based
simulant.



Successful Optical Mining Demonstration on University of
Central Florida Asteroid Simulant

00 |

Image Before Test: Image After Test After Removal From
1.32Kg 1.19Kg with Spall Vacuum Chamber

130 Grams Of Volatile
Mass Lost Out Of 220
Grams Of Spall
Production (Or 350
Grams Of Source
Material). Suggests 37%
Volatile Yield By Weight

Image After Test: 1.0Kg Spall Product 0.22kg




Solar Thermal ISRU and
Propulsion TestBed Concept

Fixed, Gooled Movable I Ozone ] COIOor? S/Ici)nsezhom
20 Inch nghSthand dG' % \Water Cooled Exhaust Pipe Water Cooled Vacuum Tank: Large Diameter
Fan rou Shutter Customized Pfeiffer Horizontal, KHH Cryotrap
Housin 820KHH0600-900
9 With Pillowed Cooled Walls and Cooled Windows
1c >
1 Water Cooled

OptiForm E1585 - Shroud UCF Supplied Asteroid Simulants
High Temperature

Elliptical Reflector

With Manifold =
Cooling -
\ Water Cooled L o o P

Superior Quartz
S e LT Sample Support With
| Rotary Stage
| Coolant Manifold |
=~62.4 Inch Focal Length
R [ -
Not Shown:
Magna Power 4 D - Moyable _flex cat?les and harnesses for power and data
T-Series 45 KW + Optical diagnostics
Cold Shot Model * Flex hoses and harnesses for water cooling
AR iCen!E ACWC-120E » Optical safety curtain _
Power Supply Water (Coolant) Chiller . Sacrificial window shields Pfeiffer WD 900 PP S22 11?A
+ Counterflow gas system for window protection Roots and Rough!ng
Pump Station
S /

é ‘ } ‘ } ‘ } ‘ Key Features of the
Optical Mining Test Bed (OMTB)




The World’s Largest Lightbulb

The Superior Quartz Sx32000D High Pressure Short Arc Xenon Arc Lamp




Elliptical Reflector
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1SS Flight Demonstration
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“The best way to predict the
future is to invent it...”

Alan Kay: The Inventor of the PC

V4 )

“»

“The future is not laid out on a track. It is something that we can decide, and to the extent that we do
not violate any known laws of the universe, we can probably make it work the way that we want to.”




